$\epsilon=U_{\text {ydre }}+U_{\text {indre }}$
$\epsilon \cdot I=U_{\text {ydre }} \cdot I+U_{\text {indre }} \cdot I$
$\epsilon \cdot I=R_{\text {ydre }} \cdot I^{2}+R_{\text {indre }} \cdot I^{2}$
$\epsilon \cdot I \cdot \Delta t=R_{y d r e} \cdot I^{2} \cdot \Delta t+R_{\text {indre }} \cdot I^{2} \cdot \Delta t=R_{\text {ydre }} \cdot Q^{2}+R_{\text {indre }} \cdot Q^{2}$
$a=b+c \quad b \quad b+c$
a: tilført energi til ladning Q
b: af givet energi i ydre resistor af ladning Q
c : af givet energi i indre resistor af ladning Q
Lad os betragte et kredsløb.
Figur 1.

Under ladningens bevægelse i kredsløbet afsættes der energi. Derfor vil strømmen hurtigt ophøre, hvis ikke der blev tilført energi et sted. Denne energitilførsel sker i
spændingskilden (batteri, akkumulator, strømforsyning etc.)

Elektromotorisk kraft ε
 Den elektriske potentielle energi der tilfores per ladning i spandingskilden, kaldes spandingskildens elektromotoriske kraft ε

Hvis en ladning q får energitilvæksten $\mathrm{E}_{\mathrm{til}}$ ved at passere spændingskilden fås hermed.

$$
\mathrm{E}_{\mathrm{ti}}=\varepsilon \mathrm{q} \quad \text { Energitilvækst for en ladning } \mathrm{q} \text { ved passage af spændingskilden. }
$$ eller

$$
\begin{aligned}
& \varepsilon=E_{\text {tiil }} / q \quad \text { Energitilvakst per ladning ved passage af spandingskilden. } \\
& {[\varepsilon]=\mathrm{J} / \mathrm{C}=\mathrm{V}}
\end{aligned}
$$

Bemærk: den elektromotoriske kraft er ikke en kraft i normal fysisk forstand, men en spændingsforskel.

Lad os betragte kredsløbet fra figur 1, men nu har vi indtegnet den indre modstand i spændingskilden.

Figur 2.

ε : spandingskildens elektromotoriske kraft, EMK
R_{i} : spandingskildens indre modstand
R_{y} : spandingskildens ydre modstand
I: strømstyrken i kredsen.
Med en strømstyrke I føres der i løbet af tiden Δt ladningen $q=I \Delta t$ rundt i kredsen.
Vi vil se på, hvad der energimæssigt sker, når ladningen q føres rundt i kredsløbet.
Når ladningen q passerer spændingskilden, tilføres den energien $E_{t i l}=\varepsilon q$.
Når ladningen passerer den indre $o g$ den ydre modstand, afgiver den energien

$$
\mathrm{E}_{\mathrm{afg}}=\left(\mathrm{R}_{\mathrm{y}}+\mathrm{R}_{\mathrm{i}}\right) \mathrm{I}^{2} \Delta \mathrm{t} \quad \text { (Joules lov). }
$$

Da strømmen er konstant, er den energi ladningen tilføres i spændingskilden, lig med den energi ladningen afgiver i kredsløbet. Dvs.

```
    \(\mathrm{E}_{\mathrm{til}}=\mathrm{E}_{\mathrm{afg}}\)
\(\Downarrow\)
        \(\varepsilon \mathrm{q}=\left(\mathrm{R}_{\mathrm{y}}+\mathrm{R}_{\mathrm{i}}\right) \mathrm{I}^{2} \Delta \mathrm{t}\)
\(\Downarrow\)
    \(\varepsilon I \Delta t=\left(R_{y}+R_{i}\right) I^{2} \Delta t \quad, d a I=q / \Delta t \Leftrightarrow q=I \Delta t\)
\(\Downarrow\)
\[
\varepsilon=\left(R_{y}+R_{i}\right) I \quad \text { Ohm's lov for et kredslob. Ohm's 2.lov. }
\]
```

Spændingsforskellen mellem spændingskildens poler kaldes polspændingen $\mathrm{U}_{\text {pol }}$ -
Denne spænding er lig med spændingen over den ydre modstand, så i følge Ohms l.lov er

$$
U_{p o l}=R_{y} I
$$

Indsættes dette i Ohms lov for et kredsløb fås:

```
    \varepsilon= R}\mp@subsup{\textrm{R}}{\textrm{y}}{}\textrm{I}+\mp@subsup{\textrm{R}}{\textrm{i}}{}\textrm{I
\Downarrow
|
    \varepsilon= U Upol }+\mp@subsup{\textrm{R}}{\textrm{i}}{}\textrm{I
\[
U_{p o l}=\varepsilon-R_{i} I
\]
```

Da ε og R_{i} er karakteristiske konstanter for en spændingskilde, kan vi, ved at måle sammenhængende værdier af $\mathrm{U}_{\text {pol }} \operatorname{og}$ I og afsætte disse i et koordinatsystem, få en et ret linie som vist nedenfor.

Figur 3.

Ud fra denne rette linie kan ε og R_{i} bestemmes.
ε : er liniens skaringspunkt med 2-aksen.
I_{k} : er liniens skaringspunkt med 1.-aksen.
$-R_{i}:$ er haldningskoefficienten for linien.
I_{k} er kortslutningsstrømmen for spændingskilden. Kortsluttes spændingsforsyningen (spændingsforsyningens poler kortsluttes med en kort tyk kobberledning) dvs. $\mathrm{R}_{\mathrm{y}}=0$, vil $U_{\text {pol }}=0$ og dermed vil

$$
0=\varepsilon-\mathrm{R}_{\mathrm{i}} \mathrm{I}_{\mathrm{k}} \quad \Leftrightarrow \quad \mathrm{I}_{\mathrm{k}}=\varepsilon / \mathrm{R}_{\mathrm{i}} .
$$

Kortsluttes spændingsforsyningen opnås den største strømstyrke, nemlig I_{k}. En sådan strømstyrke vil normalt ødelægge en spændingskilde meget hurtigt.!!
ε, der er spændingskildens elektromotoriske kraft, kaldes også spændingsforsyningens hvilespænding.
Thi, når strømmen i kredsløbet er 0 (kredsløbet er afbrudt), vil $\mathrm{U}_{\mathrm{pol}}=-\mathrm{R}_{\mathrm{i}} 0+\varepsilon=\varepsilon$.
Den elektromotoriske kraft kan dog også sættes lig med $\mathrm{U}_{\mathrm{pol}}$, når $\mathrm{R}_{\mathrm{y}} \gg \mathrm{R}_{\mathrm{i}}$.
Det ses af

$$
\begin{aligned}
& \varepsilon=\left(\mathrm{R}_{\mathrm{y}}+\mathrm{R}_{\mathrm{i}}\right) \mathrm{I} \\
& \Downarrow \\
& \varepsilon=\left(1+\mathrm{R}_{\mathrm{i}} / \mathrm{R}_{\mathrm{y}}\right) \mathrm{R}_{\mathrm{y}} \mathrm{I} \\
& \Downarrow \\
& \varepsilon \\
& \Downarrow=\left(1+\mathrm{R}_{\mathrm{i}} / \mathrm{R}_{\mathrm{y}}\right) \mathrm{U}_{\mathrm{pol}}
\end{aligned}
$$

$$
\varepsilon=\mathrm{U}_{\text {pol }} \quad, \text { da } \mathrm{R}_{\mathrm{i}} \ll \mathrm{R}_{\mathrm{y}} \Leftrightarrow \mathrm{R}_{\mathrm{i}} / \mathrm{R}_{\mathrm{y}} \ll 1
$$

Derfor kan spændingskildens elektromotoriske kraft måles med et voltmeter, blot ved at forbinde voltmeteret til spændingskildens poler.

