Energiforhold i et gravitationsfelt

$G=6,6726 \cdot 10^{-11} \frac{N \cdot m^{2}}{\mathrm{~kg}^{2}}$
$F_{g}=G \cdot \frac{M \cdot m}{r^{2}}$
$E_{\text {mek }}=E_{\text {pot }}+E_{\text {kin }}$
$E_{k i n}=\frac{1}{2} \cdot m \cdot v^{2}$
$E_{p o t}=$?
$\Delta r \ll r \quad \Delta r+r \approx r \quad F_{g}=$ konstant
$A_{\text {felt }}=-\Delta E_{\text {pot }} \quad($ konservativ kraft $)$
$A_{\text {felt }}=\vec{F} \cdot \overrightarrow{\Delta r}=F \cdot \Delta r \cdot \cos (\theta)$

$$
=F \cdot \Delta r \cdot \cos a(180)
$$

$$
=-F \cdot \Delta r
$$

$$
=-G \cdot(M \cdot m) / r^{\wedge} 2 \cdot \Delta \mathrm{r}
$$

$-\Delta E_{p o t}=$ A_felt
$-\Delta E_{p o t}=-G \cdot \frac{M \cdot m}{r^{2}} \cdot \Delta r$
$\frac{\Delta E_{p o t}}{\Delta r}=G \cdot \frac{M \cdot m}{r^{2}}$
$\Delta r \rightarrow 0$
E_pot ${ }^{\wedge^{\prime}}(r)=G \cdot \frac{M \cdot m}{r^{2}}$
E_pot $(r)=-G \cdot \frac{M \cdot m}{r}+k$
E_pot $(\infty)=-G \cdot \frac{M \cdot m}{\infty}+k$
$k=0$
$E_{p o t}(\mathrm{r})=-G \cdot \frac{M \cdot m}{r}$

